Cancer Translational Medicine

Original Research | Open Access

Vol.8 (2022) | Issue-1 | Page No: 6-15


Analysis of Immune-Related Genes in the Tumor Microenvironment of Bladder Cancer based on TCGA database

Haiyang Jiang1#, Longguo Dai1#, Huijian Wang1#, Chongjian Zhang1, Yu Bai1, Ruiqian Li1, Jun Li1, Chen Hu1, Hongyi Wu1, Hong Yang1, Qilin Wang1, Pingting Chen2*


1Department of Urology, Yunnan Cancer Hospital, The Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, Yunnan, China

2Reproductive Medicine and Genetic Center, First Hospital of Kunming Calmette Hospital, Kunming, Yunnan, China

#These authors contributed equally

* Corresponding Author

Address for correspondence: Dr. Pingting Chen, Reproductive Medicine and Genetic Center, First Hospital of Kunming Calmette Hospital, No.1228 Beijing Road, Panlong District, Kunming 650224, Yunnan, China. E-mail:

Important Dates  

Date of Submission:   29-Dec-2021

Date of Acceptance:   18-Feb-2022

Date of Publication:   29-Mar-2022


Objective: To screen immune-related genes exhibiting differential expression in the tumor microenvironment (TME) of bladder cancer and perform pathway enrichment analysis to assess the association of these genes with the TME and their prognostic value.

Methods: Differences in the gene expression were evaluated using 433 bladder cancer samples from The Cancer Genome Atlas (TCGA). These genes were used for constructing an immune-related gene prognostic index (IRGPI). Eighteen genes, that significantly associated with prognosis, were identified by Cox regression analysis, and the correlations between immune cell infiltration in the IRGPI-defined subgroups and clinical pathology were analyzed.

Results: IRGPI was constructed with 18 genes which significantly correlated with immune infiltration and clinical pathology. Patients with low IRGPI revealed better overall survival (OS). In the TME naive B cells, Plasma cells,CD4 memory T cells, activated CD8 T cells positively correlated with OS. Memory B cells, activated NK cells, M0 and M2 Macrophages, resting Mast cells, and Neutrophils negatively correlated with OS. APOBEC3H, FABP6, CXCL12, IGF1, PDGFRA, RAC3, and PGR significantly associated with M2 Macrophages.

Conclusion: IRGPI is a biomarker of immune infiltration-related prognosis of bladder cancer, with the constituent genes APOBEC3H, FABP6, CXCL12, IGF1, PDGFRA, RAC3, PGR presumably possessing higher representativeness. Therefore, these genes and M2 macrophages may potentially serve as the therapeutic targets and prognostic markers for bladder cancer.


Keywords: Bladder cancer, tumor microenvironment, M2 macrophage, immune cells, prognostic marker


The tumor microenvironment (TME) comprises tumor cells, stromal cells, infiltrating immune cells, vascular cells, and numerous cytokines and chemokines.[1],[2] Understanding the TME provides insights into progression, metastasis, and immune evasion mechanisms of tumors, which further assist in exploring correlations between tumor response to treatment and TME.[3] Immune checkpoint inhibitors (ICIs) exhibit remarkable therapeutic effects in cancer treatment and are particularly important in treating advanced bladder cancer, however, the use of ICIs is mainly limited by low patient response rates to immunotherapy.[4],[5] The key prerequisite to overcome this limitation is the determination of prognostic markers related to the effectiveness of immunotherapy. In the present study, we aimed to analyze the association among differentially expressed immune-related genes in the TME of bladder cancer, immune cells with differential infiltration, and overall survival (OS), and to identify the prognostic markers of bladder cancer and formulate individualized treatment regimens for patients with advanced bladder cancer. We screened genes related to the immune microenvironment in the transcriptomic data of patients with bladder cancer and performed enrichment analysis of these genes. A prognostic model was constructed based on the identified genes by combining the analysis results with clinical data. Furthermore, the differences in immune cell infiltration and immune-related functions were analyzed.


The transcriptomic data of 433 bladder cancer samples were downloaded from The Cancer Genome Atlas (TCGA, In total, 412 cancer samples and 19 normal samples were included for analysis after removing two samples with follow-up bias. The clinical and pathological data, follow-up time, and survival time of patients were extracted from the samples [Table 1]. Lists of immune-related genes were downloaded from ImmPort ( and InnateDB (, and gene mutation information was downloaded from cBioPortal (

Table 1.
Clinical characteristics of 412 patients with bladder cancer from TCGA


Screening of differentially expressed immune-related genes

Using the limma package in R software, differentially expressed genes (P < 0.05) were identified from TCGA data based on the lists of immune-related genes obtained from ImmPort and InnateDB.[6],[7] Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses (P < 0.05) were performed using the cluster analysis package in R software, and the data were visualized as images.

Immune-related gene analysis and clinicopathological correlation analysis

We performed Cox regression analysis with the level of significance set to P < 0.02. Moreover, 40 genes that significantly affected OS were identified and subsequently subjected to survival analysis for constructing an immune-related gene prognostic index (IRGPI).[8],[9] Thereafter, 18 genes including OAS1, PGR, HLA-G, FABP6, TFRC, APOBEC3H, RAC3, NTF3, PPY, PTGER4, SH3BP2, UNC5CL, TRIB3, CXCL12, PDGFRA, AHNAK, PDGFD, and IGF1 were eventually used for IRGPI construction. Subsequently, we performed univariate and multivariate Cox regression analysis to validate the independent prognostic value of each gene. TCGA samples were divided into high-risk and low-risk subgroups based on the IRGPI score, and a prognostic model was constructed. Gene set enrichment analysis (GSEA) was performed based on the risk scores using the gene set variation analysis (GSVA) package in R software. The following IRGS and immune cell infiltration were analyzed.


Based on the lists of immune-related genes obtained from ImmPort and InnateDB, differentially expressed genes (P < 0.05) were identified from TCGA data using the limma package in R software. In total, 5806 differentially expressed genes were obtained (logFc > 1, FDR < 0.05; Figure 1A); among these, 411 were immune-related (Figure 1B). The top 30 enriched GO terms and KEGG pathways are illustrated in Figure 1 C, D, E, and F.

Figure 1
Figure 1. Heatmap, GO, and KEGG enrichment analysis. (A) Heatmap of differentially expressed genes; (B) Heatmap of differentially expressed immune-related genes; (C, D) GO enrichment analysis; (E, F) KEGG enrichment analysis.


  The expression of 40 immune-related genes were closely associated with the OS of patients with bladder cancer when the differential gene expression levels in TCGA samples were combined with the clinical data. Subsequently, the OS data of these 40 genes were subjected to multivariate Cox regression analysis. Results indicated that 18 genes (OAS1, PGR, HLA-G, FABP6, TFRC, APOBEC3H, RAC3, NTF3, PPY, PTGER4, SH3BP2, UNC5CL, TRIB3, CXCL12, PDGFRA, AHNAK, PDGFD, IGF1) exerted significant effects on the OS [Table 2], and were used for constructing an IRGPI for calculating the prognostic index values for all samples using the following formula: IRGPI = OAS1 × (−0.254903244) + PGR × (1.154156267) +... + IGF1 × (0.618306757438194).

Table 2.
IRGPI index values


  Using the calculated IRGPI values, the patients with bladder cancer in TCGA samples were divided into the IRGPI high-risk and IRGPI low-risk subgroups. Univariate Cox regression analysis revealed that age, cancer stage, and IRGPI were significantly correlated with prognosis(P<0.001); multivariate Cox regression analysis revealed that IRGPI was an independent prognostic factor. Using the median IRGPI value as the threshold level, we found that patients of the IRGPI low-risk subgroup presented better OS than patients of the IRGPI high-risk subgroup. Figure 2 illustrates the results.

Figure 2
Figure 2. Forest figure KM curve and correlation analysis. (A) Univariate Cox analysis of the 44 immune-related genes; (B) Kaplan–Meier (KM) survival analysis of IRGPI (P < 0.05); (C) univariate correlation analysis of clinicopathological characteristics (P < 0.05); (D) multivariate correlation analysis of clinicopathological characteristics (P < 0.05).


  The enriched gene sets in the two IRGPI subgroups were determined using GSEA. The results indicated that gene sets of the IRGPI high-risk subgroup were enriched in arrhythmogenic right ventricular cardiomyopathies, ECM–receptor interaction, focal adhesion, cancer pathways, and regulation of actin cytoskeleton; gene sets of the IRGPI low-risk subgroup were enriched in allograft rejection, antigen processing and presentation, graft versus host disease, primary immunodeficiency, and type I diabetes mellitus. Figure 3 illustrates the results.

Figure 3
Figure 3. Molecular characteristics of different IRGPI subgroups. (A) Gene sets enriched in the IRGPI high-risk subgroup (P < 0.05, FDR < 0.25); (B) Gene sets enriched in the IRGPI low-risk subgroup (P < 0.05, FDR < 0.25).


Immune characteristics of different IRGPI subgroups

We compared the immune cell distributions of the two IRGPI subgroups. Herein, the naive B cells, plasma cells, resting memory CD4 T cells, M0 macrophages, activated mast cells, and neutrophils were enriched in the IRGPI high-risk subgroup, whereas CD8 T cells and activated memory CD4 T cells were enriched in the IRGPI low-risk subgroup. Moreover, the correlation analysis of immune cell infiltration and survival revealed that infiltration by memory B cells, naive B cells, M0 macrophages, M2 macrophages, resting mast cells, neutrophils, activated NK cells, plasma cells, activated memory CD4 T cells, and CD8 T cells were correlated with OS, as illustrated in Figure 4. Differences in the immune-related functions were subsequently analyzed, and our results revealed that HLA, macrophages, mast cells, MHC class 1, NK cells, and type I and II IFN responses significantly differed between the two IRGPI subgroups. Figure 4 illustrates the clinicopathological characteristics of different IRGPI subgroups.

Figure 4
Figure 4. Correlation analysis of immune cell infiltration and survival, clinicopathological characteristics of different IRGPI subgroups. (A) Proportions of TME cells in different IRGPI subgroups. Significant statistical differences between the two subgroups were assessed using the Wilcoxon test (ns: not significant; *: P < 0.05; **: P < 0.01; ***: P < 0.001); (B) KM survival analysis of memory B cell infiltration; (C)KM survival analysis of activated NK cell infiltration ; (D) KM survival analysis of M0 macrophage infiltration; (E) KM survival analysis of M2 macrophage infiltration; (F) KM survival analysis of resting mast cell infiltration; (G) KM survival analysis of neutrophil infiltration; (H) KM survival analysis of naive B cell infiltration; (I) KM survival analysis of plasma cell infiltration; (J) KM survival analysis of activated memory CD4 T cell infiltration; (K) KM survival analysis of CD8 T cell infiltration; (L) correlations of IRGPI with clinicopathological characteristics, with red denoting overexpression and blue denoting underexpression.


Finally, we analyzed the relationship between M2 Macrophages and IRGPI genes, and the results showed that M2 Macrophages was significantly correlated with PGR,  FABP6, APOBEC3H, RAC3, CXCL12, PDGFRA, IGF1, in which, the expression of PGR, RAC3, PDGFRA, IGF1, and CXCL12 were negatively correlated with OS. FABP6 and APOBEC3H expression was positively correlated with OS. Figure 5 illustrates the results.

Figure 5
Figure 5. Correlation analysis between Macrophages M2 and IRGPI genes. (A-G) Significant correlation analysis between PGR, FABP6, APOBEC3H, RAC3, CXCL12, PDGFRA, IGF1 and Macrophages M2 infiltrations for Bladder cancer. (a-g) Significant correlation analysis between PGR, FABP6, APOBEC3H, RAC3, CXCL12, PDGFRA, IGF1 and OS for Bladder cancer.



The TME plays a crucial role in malignant tumors as it evaluates the tumor response to immunotherapy. In-depth research into the TME in bladder cancer is beneficial for discovering novel prognostic markers, which may enable the implementation of precise immunotherapy.[9],[10],[11] In the present study, we determined TME-related genes that may be correlated with OS in bladder cancer. Using 433 samples from TCGA, 18 genes with significant differential expression were identified. These genes, which were independent prognostic factors of OS, were used for constructing an IRGPI. Our results indicated that patients of the IRGPI low-risk subgroup exhibited better OS than those of the IRGPI high-risk subgroup; moreover, IRGPI was associated with tumor grade, cancer stage, and pathologic T, N, and M stages. KEGG pathway enrichment analysis performed using GSEA revealed that gene sets of the IRGPI high-risk subgroup were enriched in arrhythmogenic right ventricular cardiomyopathies, ECM–receptor interaction, focal adhesion, pathways in cancer, and regulation of actin cytoskeleton, whereas gene sets of the IRGPI low-risk group were enriched in allograft rejection, antigen processing and presentation, graft versus host disease, primary immunodeficiency, and type I diabetes mellitus. To assess the value of IRGPI, we analyzed the immune characteristics of different IRGPI subgroups. The naive B cells, plasma cells, resting memory CD4 T cells, M0 macrophages, activated mast cells, and neutrophils were enriched in the IRGPI high-risk subgroup, whereas CD8 T cells and activated memory CD4 T cells were enriched in the IRGPI low-risk subgroup. Correlation analysis of immune cell infiltration and OS revealed that infiltration by naive B cells, plasma cells, activated memory CD4 T cells and CD8 T cells was positively correlated with OS, whereas infiltration by memory B cells, M0 macrophages, M2 macrophages, resting mast cells, neutrophils, and activated NK cells was negatively correlated with OS.

It has been reported that tumor-associated Macrophages (TAM) is the core of immunosuppressive cells and cytokine network and plays a crucial role in tumor immune evasion.[12] To further understand the tumor microenvironment of bladder cancer, we analyzed the expression of IRGPI genes and Macrophages. The results showed that M2 Macrophages was significantly correlated with PGR, FABP6, APOBEC3H, RAC3, CXCL12, PDGFRA, and IGF1 gene expression. The expression level of PGR, RAC3, PDGFRA, IGF1, and CXCL12 were negatively correlated with OS, While the expression level of FABP6 and APOBEC3H were positively correlated with OS. Previous research has demonstrated that CD8 T cells are the primary source of PD-1 expression and also are associated with the expression of the PD-1/PD-L1 immunosuppressive axis.[13],[14] Other studies reported that urothelial carcinoma patients with higher levels of CD8 T cell infiltration have better OS,[15],[16] which is in accordance with our results. The induction of memory T cells is a focal point in developing tumor vaccines and immunotherapies. Memory CD4 T cells “remember” their previous effector lineage after antigen clearance and can reacquire their lineage-specific effector functions upon antigen reencounter. The functional plasticity of memory CD4 T cells allow for differentiation into cytokine lineages that differ from those of the initial response stage when they are again subjected to the stimulation of property changes by T cell receptors during the immune response. Moreover, CD4 helper T cells promote priming and both the effector and memory functions of cytotoxic T lymphocytes (CTLs); furthermore, they help CTLs to overcome negative regulation, thereby amplifying the T cell response against tumor-associated antigens without deleterious autoimmunity. Antigen-specific contact with CD4 T cells enables dendritic cells (DCs) to optimize antigen presentation and to deliver specific cytokine and co-stimulatory signals to the CD8 T cells that promote their clonal expansion and differentiation into effector or memory T cells. CD4 T cells help in initiating gene expression program in CD8 T cells that enhances the CTL function by multiple molecular mechanisms, thereby enabling CTLs to overcome the obstacles that typically hamper antitumor immunity.[17],[18],[19] Macrophages are multifunctional antigen-presenting cells that play a crucial role in malignant tumors. They promote tumorigenesis, tumor development and metastasis, and chemotherapy resistance by modulating the TME and cancer cells.[20],[21],[22] Tumor-associated macrophages (TAMs), at the core of immunosuppressive cells and cytokines networks, play a crucial role in tumor immune evasion. M2 macrophages accumulate in the hypoxic regions, and the transcription factors produced by M2 macrophages in hypoxic environments can induce the expression of multiple angiogenesis-promoting genes, thereby triggering tumor progression; Some researchers believe that macrophage-targeted therapy is expected to be the next frontier of cancer immunotherapy.[23],[24] Previous research revealed that apoptotic SKOV3 cells stimulate M0 macrophages to differentiate into M2 macrophages by activating the ERK pathway, thereby inhibiting M2 macrophage differentiation during chemotherapy which may reduce the rate of tumor recurrence.[25] Other studies have reported that the level of B cell infiltration was positively correlated with the prognosis of patients with tumor.[26],[27] Our results suggested that the expression of PGR, RAC3, PDGFRA, IGF1, and CXCL12 were positively correlated with M2 macrophages in bladder cancer tissue. The low expression of FABP6 and APOBEC3H were negatively correlated with M2 macrophages, so we suggested that M2 macrophages and PGR, FABP6, APOBEC3H, RAC3, CXCL12, PDGFRA, and IGF1 might be new immunotherapy targets for bladder cancer.

In the present study, immune-related candidate genes were screened based on the data from TCGA. A major limitation of this approach is that the results obtained solely from bioinformatics analysis are insufficient for clinical applications and require validation through experimental studies.


The IRGPI constructed in this study can be potentially used as an immune-related prognostic biomarker in bladder cancer; moreover, grouping by IRGPI scores may be beneficial for distinguishing the immune-related and molecular characteristics for better evaluation of patient prognosis. PGR, RAC3, PDGFRA, IGF1, and CXCL12 were positively correlated with M2 macrophages in bladder cancer tissue. The low expression of FABP6, and APOBEC3H was negatively correlated with M2 macrophages. The expression of PGR, RAC3, PDGFRA, IGF1, and CXCL12 were negatively correlated with OS, while FABP6 and APOBEC3H expression was positively correlated with OS, thereby indicating its potential use as therapeutic target and prognostic marker.



CTLs - Cytotoxic T Lymphocytes

DCs - Dendritic Cells

ESTIMATE - Estimation of STromal and Immune cells in MAlignant Tumours using Expression data

GO - Gene Ontology

GSEA - Gene Set Enrichment Analysis

GSVA - Gene Set Variation Analysis

ICI - Immune Checkpoint Inhibitors

IRGPI - Immune-Related Gene Prognostic Index

KEGG - Kyoto Encyclopedia of Genes and Genomes

KM - Kaplan–Meier

OS - Overall Survival

PPI - Protein–Protein Interaction

TCGA - The Cancer Genome Atlas

TME - Tumor Microenvironment



The results published here are based on data generated by TCGA Research Network ( This work was supported by National Natural Science Foundation of China (No. 8216110765 - to Yu Bai) and National Cancer Center Climbing Fund (No. NCC201925B01 - to Yu Bai).



There are no conflicts of interest.



Our study used the data published in TCGA - which is a public database, and hence is exempted from the need of approval from ethics committee.



Xu WH, Xu Y, Wang J, Wan FN, Wang HK, Cao DL, Shi GH, Qu YY, Zhang HL, Ye DW. Prognostic value and immune infiltration of novel signatures in clear cell renal cell carcinoma microenvironment. Aging (Albany NY) 2019; 11(17): 6999- 7020


Meng J, Lu X, Zhou Y, Zhang M, Ge Q, Zhou J, Hao Z, Gao S, Yan F, Liang C. Tumor immune microenvironment-based classifications of bladder cancer for enhancing the response rate of immunotherapy. Mol Ther Oncolytics 2021;20: 410- 21


Daza J, Charap A, Wiklund PN, Sfakianos JP. Role of the Innate Immune System in the Development, Progression, and Therapeutic Response of Bladder Cancer. Eur Urol Focus 2020;6(4):650-2


de Jong FC, Rutten VC, Zuiverloon TCM, Theodorescu D. Improving Anti-PD-1/ PD-L1 Therapy for Localized Bladder Cancer. Int J Mol Sci 2021;22(6): 2800


Lopez-Beltran A, Cimadamore A, Blanca A, Massari F, Vau N, Scarpelli M, Cheng L, Montironi R. Immune Checkpoint Inhibitors for the Treatment of Bladder Cancer. Cancers (Basel) 2021;13(1):131


Bhattacharya S, Dunn P, Thomas CG, Smith B, Schaefer H, Chen J, Hu Z, Zalocusky KA, Shankar RD, Shen-Orr SS, Thomson E, Wiser J, Butte AJ. ImmPort, toward repurposing of open access immunological assay data for translational and clinical research. Sci Data 2018;5:180015


Dhillon BK, Smith M, Baghela A, Lee AHY, Hancock REW. Systems Biology Approaches to Understanding the Human Immune System. Front Immunol 2020; 11: 1683


He Y, Jiang Z, Chen C, Wang X. Classification of triple-negative breast cancers based on Immunogenomic profiling. J Exp Clin Cancer Res 2018;37(1):327


Chen Y, Li ZY, Zhou GQ, Sun Y. An Immune-Related Gene Prognostic Index for Head and Neck Squamous Cell Carcinoma.Clin Cancer Res 2021;27(1):330-41


Nair SS, Weil R, Dovey Z, Davis A, Tewari AK. The Tumor Microenvironment and Immunotherapy in Prostate and Bladder Cancer. Urol Clin North Am 2020; 47(4S): e17-e54


Chen YP, Zhang Y, Lv JW, Li YQ, Wang YQ, He QM, Yang XJ, Sun Y, Mao YP, Yun JP, Liu N, Ma J. Genomic Analysis of Tumor Microenvironment Immune Types across 14 Solid Cancer Types: Immunotherapeutic Implications. Theranostics 2017;7(14):3585-94


Qiu Y, Chen T, Hu R, Zhu R, Li C, Ruan Y, Xie X, Li Y. Next frontier in tumor immunotherapy: macrophage-mediated immune evasion. Biomark Res 2021; 9(1): 72


Li F, Teng H, Liu M, Liu B, Zhang D, Xu Z, Wang Y, Zhou H. Prognostic Value of Immune-Related Genes in the Tumor Microenvironment of Bladder Cancer. Front Oncol 2020;10:1302


Wang X, Wang G, Wang Z, Liu B, Han N, Li J, Lu C, Liu X, Zhang Q, Yang Q, Wang G. PD-1-expressing B cells suppress CD4+ and CD8+ T cells via PD-1/ PD-L1-dependent pathway. Mol Immunol 2019;109:20-6


Peña-Asensio J, Calvo H, Torralba M, Miquel J, Sanz-de-Villalobos E, Larrubia JR. Anti-PD-1/PD-L1 Based Combination Immunotherapy to Boost Antigen-Specific CD8+ T Cell Response in Hepatocellular Carcinoma. Cancers (Basel) 2021;13(8): 1922


Wang C, Xu Z, Li W, Jiao Y, Wang J, Zhang B. Analysis of the correlation between E2F3 expression and the number of tumor-infiltrating CD8~+T cells in invasive bladder cancer tissues. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 2018;34(1):1-8. ( in Chinese)


Zhang Y, Li X, Zhou R, Lin A, Cao M, Lyu Q, Luo P, Zhang J. Glycogen Metabolism Predicts the Efficacy of Immunotherapy for Urothelial Carcinoma. Front Pharmacol 2021; 12:723066


Church SE, Jensen SM, Antony PA, Restifo NP, Fox BA. Tumor-specific CD4+ T cells maintain effector and memory tumor-specific CD8+ T cells. Eur J Immunol 2014;44(1):69-79


Borst J, Ahrends T, Bąbała N, Melief CJM, Kastenmüller W. CD4 + T cell help in cancer immunology and immunotherapy. Nat Rev Immunol 2018;18(10): 635-47


Lee HG, Cho MZ, Choi JM. Bystander CD4+ T cells: crossroads between innate and adaptive immunity. Exp Mol Med 2020; 52(8):1255-63


Liu J, Wu F, Zhou H. Macrophage-derived exosomes in cancers: Biogenesis, functions and therapeutic applications. Immunol Lett 2020;227:102-8


Fu C, Jiang L, Hao S, Liu Z, Ding S, Zhang W, Yang X, Li S. Activation of the IL-4/STAT6 Signaling Pathway Promotes Lung Cancer Progression by Increasing M2 Myeloid Cells. Front Immunol 2019;10:2638


Zhang Y, Du W, Chen Z, Xiang C. Upregulation of PD-L1 by SPP1 mediates macrophage polarization and facilitates immune escape in lung adenocarcinoma. Exp Cell Res 2017;359(2):449-57


Jiang J, Wang GZ, Wang Y, Huang HZ, Li WT, Qu XD. Hypoxia-induced HMGB1 expression of HCC promotes tumor invasiveness and metastasis via regulating macrophage-derived IL-6. Exp Cell Res 2018;367(1):81-8


Zhang Q, Li H, Mao Y, Wang X, Zhang X, Yu X, Tian J, Lei Z, Li C, Han Q, Suo L, Gao Y, Guo H, Irwin DM, Niu G, Tan H. Apoptotic SKOV3 cells stimulate M0 macrophages to differentiate into M2 macrophages and promote the proliferation and migration of ovarian cancer cells by activating the ERK signaling pathway. Int J Mol Med 2020;45(1):10-22


Wouters MCA, Nelson BH. Prognostic significance of tumor-infiltrating B cells and plasma cells in human cancer. Clin Cancer Res 2018;24(24):6125-35


Pinto R, Petriella D, Lacalamita R, Montrone M, Catino A, Pizzutilo P, Botticella MA, Zito FA, Del Bene G, Zonno A, Tommasi S, De Summa S. KRAS-Driven Lung Adenocarcinoma and B Cell Infiltration: Novel Insights for Immunotherapy. Cancers(Basel) 2019;11(8):1145

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution‑NonCommercial‑ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non‑commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: 


All claims made in this article are exclusively those of the writers, and do not necessarily reflect the views of their connected organizations, the publisher, editors, or reviewers. The publication does not guarantee or promote any product that may be evaluated in this article or any claim made by its producer.

Related Articles

TRAF Proteins In NSCLC: Analysis Of Data From The Public Database And Literature Review

Xuebing Li1, Yaguang Fan1, Hongli Pan1, Yang Li1, Limin Cao1, Zhenhua Pan1, Lingling Zu1, Fanrong Meng2, Mengjie Li3, Qinghua Zhou1, Xuexia Zhou4*


Research Progress of Cytokines and Their Receptors in Ovarian Cancer

Yuanwen Zhang1, Zhouman He1, Shiyun Liang1, Jian Yuan1, Huihui Ti1 *



Contribution Of Human Endogenous Retroviruses To Metastasis Of Solid Tumors

Nianbin Li1, Jing Wang2, Yaguang Fan2, Min Wang2, Chen Chen2, Ting Wang1*, Heng Wu2*



Role of PD-1/PD-L1 Inhibitors in the Treatment of Metastatic Lung Cancer

Yufei Chen1, Mei Zhong2, Zhenhua Pan2, Jun Chen2, Hongli Chen2, Fengjie Guo2, 3,*



Cytochrome P450 2C19 Polymorphisms are Associated with a High Risk of Esophageal Squamous Cell Carcinoma in Asian Populations: A Systematic Review and Meta-Analysis

Xuehan Gao1, Zhihong Qian2, Guige Wang1, Lei Liu1, Jiaqi Zhang1, Ke Zhao1, Mengxin Zhou1, Shanqing Li1*

Limb Arterial Embolism secondary to Myocardial Primary Light Chain Amyloidosis – A Case Report

Lei Ji1, Zhili Liu1, Yuehong Zheng1*

In situ Laser Fenestration to Reconstruct Three Supra Arch Branches for Recurrent Aortic Dissection after Replacement of the Ascending Aorta and Implantation of Stent Graft in the Descending Aorta: A Case Report

Li Yuan Niu1, Hai Xin1, Hao Fu Wang1*, Yue Wei Wang1*

Research progress in traditional Chinese medicine for the treatment of androgenic alopecia

Weiwei LI1, Chenghao Zhu2, Dandan Yang3, Yanhua YI1, Shuncai Liu1, Zhenyu Gong1*

Isolated Abdominal Wall Metastasis without Definitive Primary Lesion after Laparoscopic Cholecystectomy: A Case Report

La Zhang1, Ning Jiang2, Rui Liao1, Baoyong Zhou1*, Dewei Li3*

Diagnostic Biomarkers in Cerebrospinal Fluid in Primary Central Nervous System Lymphoma: A Protocol for Systematic Review and Meta-analysis

Lili Zhou1,2, Hai Yi1*, Dan Chen1, Qian Zhang1, Fangyi Fan1, Ling Qiu1, Nan Zhang1, Yi Su1

Updates on Molecular Markers for Gliomas

Jingyao Jie1, Weijuan Zhang2*

Peroxisome Proliferator-Activated Receptor-γ Agonists as New Targets of Lung Cancer Therapy

Shixiong Wei1*

Microcirculation Specialist Consensus on Diagnosis and Treatment of Superficial Varicose Veins of Lower Limbs

Wang Lei1, Zheng Yuehong1*

Anticoagulation might not be necessary for asymptomatic central venous catheter-related thrombosis in adults

Wei Zhang1, Zhi Xiang1, Qin Ma2, Chuanlin Zhang3, Yu Zhao1, Qining Fu1*

The Roles of microRNA in the Diagnosis and Prognosis of Papillary Thyroid Cancer

Jingya Gao1*, Li Liu2*

Lung Cancer Tumor Microenvironment: An Update on Recent Advances in Research

Guangda Yuan1, Bowen Hu1, Yong Yang1*

Quantified ADC Values and Attenuation Trends for Diagnosing Prostate Cancer with Multiple b Values MRI

Jing Hu1#, Jingying Bu1#,Zhe Wang2#, Zhengdan Su2, Xiaoxian Wang2, Haiyao Pi3, Diliang Li2, Zhaoyang Pu4, Xin Tian1*

Differential Expression of T-box Transcription Factor TBX19 Regulates the Progression of Hepatocellular Carcinoma

Guifang He1, Yanjiao Hu2, Fuguo Dong3, Changchang Liu1, Duo Cai1, Shihai Liu1*

Advances in Pathogenesis and Non-surgical Therapy of Cutaneous Basal Cell Carcinoma

Yichen Wu1, Jia Chen2*

Quercetin Inhibits the Proliferation and Migration of Pancreatic Adenocarcinoma by Targeting the Prognostic-related Gene MMP1 via Bioinformatics and Network Pharmacology

Zhenhua Zu1,2#, Zhongguo Zhu3#, Zhiyu Xia2, Hongrang Chen1*, Yongsheng Li1*

Huge Lung Fibroleiomyomatous Hamartoma in the Pleural Cavity – A Case report

Minghui Liu1#, Xin Li1#, Hongbing Zhang1, Fan Ren1, Ming Dong1, Chunqiu Xia1, Jun Chen1,2*

Increased Expression of IL-17A, IL-6, STAT3, TGF-β, and VEGF: Potential Biomarkers in Bladder Cancer?

Zishen Xiao1, Chengxia Bai1, Teng Zhao1, Jiayu Lin1, Lijuan Yang1, Jian Liu2, Zhenjiang Wang1, Ying Sun3,4, Yanbo Liu1*

Identification of NSD2 as a Potential Diagnostic and Prognostic Biomarker for Hepatocellular Carcinoma

Wei Zhao1#, Xinyu Xiao1#, Yu Gao1,2, Shanshan Liu3, Xiuzhen Zhang1, Changhong Yang1, Qiling Peng1, Ning Jiang2*, Jianwei Wang1*

Quercetin Inhibits Glioma Proliferation by Targeting CDK1 and CCNB1 - Bioinformatics and Network Pharmacology

Huaixu Li1#, Peng Gao1#, Haotian Tian1, Zhenyu Han2, Xingliang Dai1*, Hongwei Cheng1*

Selective Internal Radiation Therapy with Yttrium-90 Microspheres in Hepatocellular Carcinoma – Applications and recent advances

Wei Wang1, Dawei Xie1, Bing Li1, Minghao Chen1*

Irreversible Electroporation in Pancreatic Cancer – Applications and recent advances

Yuanyuan Sun1, Qian Li2, Jia Hu2, Yanfang Liu2*, Xiaosong Li2*

Prognostic Value of Bismuth Typing and Modified T‑stage in Hilar Cholangiocarcinoma

Shengen Yi, Xiongjian Cui, Li Xiong, Xiaofeng Deng, Dongni Pei, Yu Wen, Xiongying Miao

MicroRNAs are Related to Rituximab in Combination with Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone Resistance in Patients with Diffuse Large B-cell Lymphoma

Haibo Huang1, Junjiao Gu1, Shuna Yao1, Zhihua Yao1, Yan Zhao1, Qingxin Xia2, Jie Ma2, Ling Mai3, Shujun Yang1, Yanyan Liu1

Comparison of Intra-voxel Incoherent Motion Diffusion Magnetic Resonance Imaging and Apparent Diffusion Coefficient in the Evaluation of Focal Malignant Liver Masses

Jinrong Qu1, Xiang Li1, Lei Qin2, Lifeng Wang1, Junpeng Luo1, Jianwei Zhang1, Hongkai Zhang1, Jing Li1, Fei Sun3, Shouning Zhang1, Yanle Li1, Cuicui Liu1, Hailiang Li1

Extracting Breathing Signal Using Fourier Transform from Cine Magnetic Resonance Imaging

Jing Cai1,2, Yilin Liu2, Fangfang Yin1,2

Split End Family RNA Binding Proteins: Novel Tumor Suppressors Coupling Transcriptional Regulation with RNA Processing

Hairui Su1, Yanyan Liu2, Xinyang Zhao1

Thioredoxin-interacting Protein as a Common Regulation Target for Multiple Drugs in Clinical Therapy/Application

Pengxing  Zhang1, Xiaoling Pang2,3, Yanyang Tu1,4

Associations of Age and Chemotherapy with Late Skin and Subcutaneous Tissue Toxicity in a Hypofractionated Adjuvant Radiation Therapy Schedule in Post‑mastectomy Breast Cancer Patients

Mohammad Akram1, Ghufran Nahid1, Shahid Ali Siddiqui1, Ruquiya Afrose2

Monitoring of Disease Activity in Chronic Myeloid Leukemia‑chronic Phase Patients Treated with Indian Generic Veenat (NATCO) Imatinib Mesylate: A Tertiary Care Experience

Khushboo Dewan, Tathagat Chatterjee

Review of Cancer Immunotherapy: Application of Chimeric Antigen Receptor T Cells and Programmed Death 1/Programmed Death‑ligand 1 Antibodies

Tengfei Zhang1,2, Ling Cao1, Zhen Zhang1, Dongli Yue1, Yu Ping1, Hong Li1, Lan Huang1, Yi Zhang1,3,4,5

Systematic Review of MicroRNAs and its Therapeutic Potential in Glioma

Nan Liu1, Yanyang Tu2

The Involvement of p53‑miR‑34a‑CDK4 Signaling During the Development of Cervical Cancer

Huijun Zuo, Jieqi Xiong, Hongwei Chen, Sisun Liu, Qiaoying Gong, Fei Guo

Unusual Clinical Presentation of a Rare Type of Breast Malignancy: A Case Report and a Short Review of Literature

Nadeesha J. Nawarathna1, Navam R. Kumarasinghe1, Palitha Rathnayake2,
Ranjith J. K. Seneviratne1

Sweet’s Syndrome in Acute Lymphoblastic Leukemia with t (9:22)

Khushboo Dewan, Shailaja Shukla

Analysis of the Correlationship between Prostate Specific Antigen Related Variables and Risk Factor in Patients with Prostate Carcinoma

Daoyuan Wang1, Tiejun Yang2, Yongqiang Zou1, Xinqiang Yang1

Recent Progress in Genetic and Epigenetic Profile of Diffuse Gastric Cancer

Zhengxi He1, Bin Li1,2

Strategies for Management of Spinal Metastases: A Comprehensive Review

Zhantao Deng, Bin Xu, Jiewen Jin, Jianning Zhao, Haidong Xu

Application and Perspectives of Traditional Chinese Medicine in the Treatment of Liver Cancer

Xia Mao, Yanqiong Zhang, Na Lin

Primary Hepatic Carcinoid Tumor: A Case Report and Literature Review

Yupeng Lei1, Hongxia Chen2, Pi Liu1, Xiaodong Zhou1

Expression Characteristics of miR‑10b in Nasopharyngeal Carcinoma

Gang Li, Yunteng Zhao, Jianqi Wang, Haoran Huang, Mengwen Zhang

An Update on Immunohistochemistry in Translational Cancer Research

Zonggao Shi, M. Sharon Stack

Promoter Methylated Tumor Suppressor Genes in Glioma

Yingduan Cheng1, Yanyang Tu2, Pei Liang3

Palliative Treatment of Malignant Pleural Effusion

Chenyang Liu1*, Qian Qian2*, Shen Geng1, Wenkui Sun1, Yi Shi1

Functional Perspective and Implications of Gene Expression by Noncoding RNAs

Xiaoshuang Yan1, Huanyu Xu2, Zhonghai Yan3

Expression of E3 Ubiquitin Ligases in Multiple Myeloma Patients after Treatment with the Proteasome Inhibitor Bortezomib

James Joseph Driscoll

miR‑505 Downregulates 6‑Phosphofructo‑2‑Kinase/ Fructose‑2,6‑Biphosphatase 4 to Promote Cell Death in Glioblastoma

Esther H. Chung, Hongwei Yang, Hongyan Xing, Rona S. Carroll, Mark D. Johnson

Utility of Fine Needle Aspiration Cytology in Diagnosing Bone Tumors

Sonal Mahajan1, Akash Arvind Saoji2, Anil Agrawal1

Histone H2A and H2B Deubiquitinase in Developmental Disease and Cancer

Demeng Chen1, Caifeng Dai2, Yizhou Jiang3

Genetic Characteristics of Glioblastoma: Clinical Implications of Heterogeneity

Qian Li1, Yanyang Tu1,2

Acute Lymphoblastic Leukemia with Normal Platelet Count

Khushboo Dewan, Kiran Agarwal

Galanin is a Novel Epigenetic Silenced Functional Tumor Suppressor in Renal Cell Carcinoma

Shengkun Sun1*, Axiang Xu1*, Guoqiang Yang1, Yingduan Cheng2


Selenium Dioxide Induced Apoptosis in Cervical Cancer Cells via Regulating Apoptosis-related Let-7a MicroRNA and Proteins

Sisun Liu1, Jieqi Xiong2, Ling Guo3, Min Xiu1,4, Feng He1,4, Yuanlei Lou5, Fei Guo6,7

Low Expression of Polo‑like Kinase 1 is Associated with Poor Prognosis in Liver Cancer

Weixia Li1, Kunpeng Liu1, Dechen Lin2, Xin Xu2, Haizhen Lu3, Xinyu Bi4, Mingrong Wang2

Extracorporeal Photopheresis for Steroid‑refractory Chronic Graft‑versus‑host Disease After Allogeneic Hematopoietic Stem Cell Transplantation: A Systematic Review and Meta‑Analysis

Runzhe Chen1, Baoan Chen1, Peter Dreger2, Michael Schmitt2, Anita Schmitt2

Glucans and Cancer: Historical Perspective

Petr Sima1, Luca Vannucci1, Vaclav Vetvicka2

Implications of Circadian Rhythm Regulation by microRNAs in Colorectal Cancer

Song Wu1, Andrew Fesler2, Jingfang Ju2

BCL2 Family, Mitochondrial Apoptosis, and Beyond

Haiming Dai1, X. Wei Meng2, Scott H. Kaufmann2

Quantum Dot‑based Immunohistochemistry for Pathological Applications

Li Zhou1, Jingzhe Yan2, Lingxia Tong3, Xuezhe Han4, Xuefeng Wu5, Peng Guo6

CD24 as a Molecular Marker in Ovarian Cancer: A Literature Review

Lu Huang1, Weiguo Lv2, Xiaofeng Zhao1

Etiological Trends in Oral Squamous Cell Carcinoma: A Retrospective Institutional Study

Varsha Salian, Chethana Dinakar, Pushparaja Shetty, Vidya Ajila

Effect of Irinotecan Combined with Cetuximab on Liver Function in Patients with Advanced Colorectal Cancer with Liver Metastases

Yan Liang1, Yang Li2, Xin Li3, Jianfu Zhao4

The Role of Precision Medicine in Pancreatic Cancer: Challenges for Targeted Therapy, Immune Modulating Treatment, Early Detection, and Less Invasive Operations

Khaled Kyle Wong1, Zhirong Qian2, Yi Le3

Targeting Signal Transducer and Activator of Transcription 3 for Colorectal Cancer Prevention and Treatment with Natural Products

Weidong Li1,2*, Cihui Chen3*, Zheng Liu2, Baojin Hua1

The Potential of Wnt Signaling Pathway in Cancer: A Focus on Breast Cancer

Mahnaz M. Kazi, Trupti I. Trivedi, Toral P. Kobawala, Nandita R. Ghosh

Imaging‑driven Digital Biomarkers

Enrico Capobianco

Target‑Matching Accuracy in Stereotactic Body Radiation Therapy of Lung Cancer: An Investigation Based on Four‑Dimensional Digital Human Phantom

Jing Cai1,2, Kate Turner2, Xiao Liang2, W. Paul Segars2,3, Chris R. Kelsey1, David Yoo1, Lei Ren1,2, Fang‑Fang Yin1,2

Downregulation of Death‑associated Protein Kinase 3 and Caspase‑3 Correlate to the Progression and Poor Prognosis of Gliomas

Ye Song, Tianshi Que, Hao Long, Xi’an Zhang, Luxiong Fang, Zhiyong Li, Songtao Qi

Hyaluronic Acid in Normal and Neoplastic Colorectal Tissue: Electrospray Ionization Mass Spectrometric and Fluor Metric Analysis

Ana Paula Cleto Marolla1, Jaques Waisberg2, Gabriela Tognini Saba2, Demétrius Eduardo Germini2, Maria Aparecida da Silva Pinhal1

Melanoma Antigen Gene Family in the Cancer Immunotherapy

Fengyu Zhu1, Yu Liang1, Demeng Chen2, Yang Li1

Combined Chronic Lymphocytic Leukemia and Pancreatic Neuroendocrine Carcinoma: A Collision Tumor Variation

Kaijun Huang1, Panagiotis J. Vlachostergios1, Wanhua Yang2, Rajeev L. Balmiki3

Antiproliferative and Apoptotic Effect of Pleurotus ostreatus on Human Mammary Carcinoma Cell Line (Michigan Cancer Foundation‑7)

Krishnamoorthy Deepalakshmi, Sankaran Mirunalini

Impact of Age on the Biochemical Failure and Androgen Suppression after Radical Prostatectomy for Prostate Cancer in Chilean Men

Nigel P. Murray1,2, Eduardo Reyes1,3, Nelson Orellana1, Cynthia Fuentealba1, Omar Jacob1

Carcinoma of Unknown Primary: 35 Years of a Single Institution’s Experience

Rana I. Mahmood1,2, Mohammed Aldehaim1,3, Fazal Hussain4, Tusneem A. Elhassan4,
Zubeir A. Khan5, Muhammad A. Memon6

Metformin in Ovarian Cancer Therapy: A Discussion

Yeling Ouyang1, Xi Chen2, Chunyun Zhang1, Vichitra Bunyamanop1, Jianfeng Guo3

The Progress in Molecular Biomarkers of Gliomas

Jing Qi1, Hongwei Yang2, Xin Wang2, Yanyang Tu1

Correlation between Paclitaxel Tc > 0.05 and its Therapeutic Efficacy and Severe Toxicities in Ovarian Cancer Patients

Shuyao Zhang1*, Muyin Sun2*, Yun Yuan3*, Miaojun Wang4*, Yuqi She1*, Li Zhou5, Congzhu Li5, Chen Chen1, Shengqi Zhang4

Identifying Gaps and Relative Opportunities for Discovering Membrane Proteomic Biomarkers of Triple‑negative Breast Cancer as a Translational Priority

Bhooma Venkatraman

The Molecular Mechanism and Regulatory Pathways of Cancer Stem Cells

Zhen Wang1, Hongwei Yang2, Xin Wang2, Liang Wang3, Yingduan Cheng4, Yongsheng Zhang5, Yanyang Tu1,2

Nanoparticle Drug Delivery Systems and Three‑dimensional Cell Cultures in Cancer Treatments and Research

Wenjin Shi1, Ding Weng2,3, Wanting Niu2,3

Choline Kinase Inhibitors Synergize with TRAIL in the Treatment of Colorectal Tumors and Overcomes TRAIL Resistance

Juan Carlos Lacal1, Ladislav Andera2

MicroRNA Regulating Metabolic Reprogramming in Tumor Cells: New Tumor Markers

Daniel Otero‑Albiol, Blanca Felipe‑Abrio

Biomarkers of Colorectal Cancer: A Genome‑wide Perspective

José M. Santos‑Pereira1, Sandra Muñoz‑Galván2

Nicotinamide Adenine Dinucleotide+ Metabolism Biomarkers in Malignant Gliomas

Manuel P. Jiménez‑García, Eva M. Verdugo‑Sivianes, Antonio Lucena‑Cacace

Patient-derived Xenografts as Models for Personalized Medicine Research in Cancer

Marco Perez, Lola Navas, Amancio Carnero

Genome‑wide Transcriptome Analysis of Prostate Cancer Tissue Identified Overexpression of Specific Members of the Human Endogenous Retrovirus‑K Family

Behnam Sayanjali1,2

Clinical Utility of Interleukin‑18 in Breast Cancer Patients: A Pilot Study

Reecha A. Parikh, Toral P. Kobawala, Trupti I. Trivedi, Mahnaz M. Kazi, Nandita R. Ghosh

Current and Future Systemic Treatment Options for Advanced Soft‑tissue Sarcoma beyond Anthracyclines and Ifosfamide

Nadia Hindi1,2, Javier Martin‑Broto1,2

The Genomic Organization and Function of IRX1 in Tumorigenesis and Development

Pengxing Zhang1, Hongwei Yang2, Xin Wang2, Liang Wang3, Yingduan Cheng4, Yongsheng Zhang5, Yanyang Tu1,2

Stem Cell‑based Approach in Diabetes and Pancreatic Cancer Management

Yi‑Zhou Jiang1, Demeng Chen2

Mutation Detection with a Liquid Biopsy 96 Mutation Assay in Cancer Patients and Healthy Donors

Aaron Yun Chen, Glenn D. Braunstein, Megan S. Anselmo, Jair A. Jaboni, Fernando Troy Viloria, Julie A. Neidich, Xiang Li, Anja Kammesheidt

The Application of Estrogen Receptor‑1 Mutations’ Detection through Circulating Tumor DNA in Breast Cancer

Binliang Liu, Yalan Yang, Zongbi Yi, Xiuwen Guan, Fei Ma

Circulating MicroRNAs and Long Noncoding RNAs: Liquid Biomarkers in Thoracic Cancers

Pablo Reclusa1, Anna Valentino1, Rafael Sirera1,2, Martin Frederik Dietrich3, Luis Estuardo Raez3, Christian Rolfo1

Exosomes Biology: Function and Clinical Implications in Lung Cancer

Martin Frederik Dietrich1, Christian Rolfo2, Pablo Reclusa2, Marco Giallombardo2, Anna Valentino2, Luis E. Raez1

Circulating Tumor DNA: A Potential Biomarker from Solid Tumors’ Monitor to Anticancer Therapies

Ting Chen1,2, Rongzhang He1,3, Xinglin Hu1,3,4, Weihao Luo1, Zheng Hu1,3, Jia Li1, Lili Duan1, Yali Xie1,2, Wenna Luo1,2, Tan Tan1,2, Di‑Xian Luo1,2

Novel Molecular Multilevel Targeted Antitumor Agents

Poonam Sonawane1, Young A. Choi1, Hetal Pandya2, Denise M. Herpai1, Izabela Fokt3,
Waldemar Priebe3, Waldemar Debinski1

Fish Oil and Prostate Cancer: Effects and Clinical Relevance

Pei Liang, Michael Gao Jr.

Stemness‑related Markers in Cancer

Wenxiu Zhao1, Yvonne Li2, Xun Zhang1

Autophagy Regulated by miRNAs in Colorectal Cancer Progression and Resistance

Andrew Fesler1, Hua Liu1, Ning Wu1,2, Fei Liu3, Peixue Ling3, Jingfang Ju1,3

Gastric Metastases Mimicking Primary Gastric Cancer: A Brief Literature Review

Simona Gurzu1,2,3, Marius Alexandru Beleaua1, Laura Banias2, Ioan Jung1

Possibility of Specific Expression of the Protein Toxins at the Tumor Site with Tumor‑specialized Promoter

Liyuan Zhou1,2, Yujun Li1,2, Changchen Hu3, Binquan Wang1,2

SKI‑178: A Multitargeted Inhibitor of Sphingosine Kinase and Microtubule Dynamics Demonstrating Therapeutic Efficacy in Acute Myeloid Leukemia Models

Jeremy A. Hengst1,2, Taryn E. Dick1,2, Arati Sharma1, Kenichiro Doi3, Shailaja Hegde4, Su‑Fern Tan5, Laura M. Geffert1,2, Todd E. Fox5, Arun K. Sharma1, Dhimant Desai1, Shantu Amin1, Mark Kester5, Thomas P. Loughran5, Robert F. Paulson4, David F. Claxton6, Hong‑Gang Wang3, Jong K. Yun1,2

A T‑cell Engager‑armed Oncolytic Vaccinia Virus to Target the Tumor Stroma

Feng Yu1, Bangxing Hong1, Xiao‑Tong Song1,2,3

Real‑world Experience with Abiraterone in Metastatic Castration‑resistant Prostate Cancer

Yasar Ahmed1, Nemer Osman1, Rizwan Sheikh2, Sarah Picardo1, Geoffrey Watson1

Combination of Interleukin‑11Rα Chimeric Antigen Receptor T‑cells and Programmed Death‑1 Blockade as an Approach to Targeting Osteosarcoma Cells In vitro

Hatel Rana Moonat, Gangxiong Huang, Pooja Dhupkar, Keri Schadler, Nancy Gordon,
Eugenie Kleinerman

Efficacy and Safety of Paclitaxel‑based Therapy and Nonpaclitaxel‑based Therapy in Advanced Gastric Cancer

Tongwei Wu, Xiao Yang, Min An, Wenqin Luo, Danxian Cai, Xiaolong Qi

Motion Estimation of the Liver Based on Deformable Image Registration: A Comparison Between Four‑Dimensional‑Computed Tomography and Four‑Dimensional-Magnetic Resonance Imaging

Xiao Liang1, Fang‑Fang Yin1,2, Yilin Liu1, Brian Czito2, Manisha Palta2, Mustafa Bashir3, Jing Cai1,2

A Feasibility Study of Applying Thermal Imaging to Assist Quality Assurance of High‑Dose Rate Brachytherapy

Xiaofeng Zhu1, Yu Lei1, Dandan Zheng1, Sicong Li1, Vivek Verma1, Mutian Zhang1, Qinghui Zhang1, Xiaoli Tang2, Jun Lian2, Sha X. Chang2, Haijun Song3, Sumin Zhou1, Charles A. Enke1

Role of Exosome microRNA in Breast Cancer

Wang Qu, Ma Fei, Binghe Xu

Recent Progress in Technological Improvement and Biomedical Applications of the Clustered Regularly Interspaced Short Palindromic Repeats/Cas System

Yanlan Li1,2*, Zheng Hu1*, Yufang Yin3, Rongzhang He1, Jian Hu1, Weihao Luo1, Jia Li1, Gebo Wen2, Li Xiao1, Kai Li1, Duanfang Liao4, Di-Xian Luo1,5

The Significance of Nuclear Factor‑Kappa B Signaling Pathway in Glioma: A Review

Xiaoshan Xu1, Hongwei Yang2, Xin Wang2, Yanyang Tu1

Markerless Four‑Dimensional‑Cone Beam Computed Tomography Projection‑Phase Sorting Using Prior Knowledge and Patient Motion Modeling: A Feasibility Study

Lei Zhang1,2, Yawei Zhang2, You Zhang1,2,3, Wendy B. Harris1,2, Fang‑Fang Yin1,2,4, Jing Cai1,4,5, Lei Ren1,2

The Producing Capabilities of Interferon‑g and Interleukin‑10 of Spleen Cells in Primary and Metastasized Oral Squamous Cell Carcinoma Cells-implanted Mice

Yasuka Azuma1,2, Masako Mizuno‑Kamiya3, Eiji Takayama1, Harumi Kawaki1, Toshihiro Inagaki4, Eiichi Chihara2, Yasunori Muramatsu5, Nobuo Kondoh1

“Eating” Cancer Cells by Blocking CD47 Signaling: Cancer Therapy by Targeting the Innate Immune Checkpoint

Yi‑Rong Xiang, Li Liu

Glycosylation is Involved in Malignant Properties of Cancer Cells

Kazunori Hamamura1, Koichi Furukawa2

Biomarkers in Molecular Epidemiology Study of Oral Squamous Cell Carcinoma in the Era of Precision Medicine

Qing‑Hao Zhu1*, Qing‑Chao Shang1*, Zhi‑Hao Hu1*, Yuan Liu2, Bo Li1, Bo Wang1, An‑Hui Wang1

I‑Kappa‑B Kinase‑epsilon Activates Nuclear Factor‑kappa B and STAT5B and Supports Glioblastoma Growth but Amlexanox Shows Little Therapeutic Potential in These Tumors

Nadège Dubois1, Sharon Berendsen2, Aurélie Henry1,2, Minh Nguyen1, Vincent Bours1,
Pierre Alain Robe1,2

Suppressive Effect of Mesenchymal Stromal Cells on Interferon‑g‑Producing Capability of Spleen Cells was Specifically Enhanced through Humoral Mediator(s) from Mouse Oral Squamous Cell Carcinoma Sq‑1979 Cells In Vitro

Toshihiro Inagaki1,2, Masako Mizuno‑Kamiya3, Eiji Takayama1, Harumi Kawaki1, Eiichi Chihara4, Yasunori Muramatsu5, Shinichiro Sumitomo5, Nobuo Kondoh1

An Interplay Between MicroRNA and SOX4 in the Regulation of Epithelial–Mesenchymal Transition and Cancer Progression

Anjali Geethadevi1, Ansul Sharma2, Manish Kumar Sharma3, Deepak Parashar1

MicroRNAs Differentially Expressed in Prostate Cancer of African‑American and European‑American Men

Ernest K. Amankwah

The Role of Reactive Oxygen Species in Screening Anticancer Agents

Xiaohui Xu1, Zilong Dang2, Taoli Sun3, Shengping Zhang1, Hongyan Zhang1

Panobinostat and Its Combination with 3‑Deazaneplanocin‑A Induce Apoptosis and Inhibit In vitro Tumorigenesis and Metastasis in GOS‑3 Glioblastoma Cell Lines

Javier de la Rosa*, Alejandro Urdiciain*, Juan Jesús Aznar‑Morales, Bárbara Meléndez1,
Juan A. Rey2, Miguel A. Idoate3, Javier S. Castresana

Cancer Stem‑Like Cells Have Cisplatin Resistance and miR‑93 Regulate p21 Expression in Breast Cancer

Akiko Sasaki1, Yuko Tsunoda2, Kanji Furuya3, Hideto Oyamada1, Mayumi Tsuji1, Yuko Udaka1, Masahiro Hosonuma1, Haruna Shirako1, Nana Ichimura1, Yuji Kiuchi1

The Contribution of Hexokinase 2 in Glioma

Hui Liu1, Hongwei Yang2, Xin Wang3, Yanyang Tu1

The Mechanism of BMI1 in Regulating Cancer Stemness Maintenance, Metastasis, Chemo‑ and Radiation Resistance

Xiaoshan Xu, Zhen Wang, Nan Liu, Pengxing Zhang, Hui Liu, Jing Qi, Yanyang Tu

A Multisource Adaptive Magnetic Resonance Image Fusion Technique for Versatile Contrast Magnetic Resonance Imaging

Lei Zhang1,2, Fang‑Fang Yin1,2,3, Brittany Moore1,2, Silu Han1,2, Jing Cai1,2,4

Senescence and Cancer

Sulin Zeng1,2, Wen H. Shen2, Li Liu1

The “Wild”‑type Gastrointestinal Stromal Tumors: Heterogeneity on Molecule Characteristics and Clinical Features

Yanhua Mou1, Quan Wang1, Bin Li1,2

Retreatment with Cabazitaxel in a Long‑Surviving Patient with Castration‑Resistant Prostate Cancer and Visceral Metastasis

Raquel Luque Caro, Carmen Sánchez Toro, Lucia Ochoa Vallejo

Therapy‑Induced Histopathological Changes in Breast Cancers: The Changing Role of Pathology in Breast Cancer Diagnosis and Treatment

Shazima Sheereen1, Flora D. Lobo1, Waseemoddin Patel2, Shamama Sheereen3,
Abhishek Singh Nayyar4, Mubeen Khan5

Glioma Research in the Era of Medical Big Data

Feiyifan Wang1, Christopher J. Pirozzi2, Xuejun Li1

Transarterial Embolization for Hepatocellular Adenomas: Case Report and Literature Review

Jian‑Hong Zhong1,2, Kang Chen1, Bhavesh K. Ahir3, Qi Huang4, Ye Wu4, Cheng‑Cheng Liao1, Rong‑Rong Jia1, Bang‑De Xiang1,2, Le‑Qun Li1,2

Nicotinamide Phosphoribosyltransferase: Biology, Role in Cancer, and Novel Drug Target

Antonio Lucena‑Cacace1,2,3, Amancio Carnero1,2

Enhanced Anticancer Effect by Combination of Proteoglucan and Vitamin K3 on Bladder Cancer Cells

Michael Zhang, Kelvin Zheng, Muhammad Choudhury, John Phillips, Sensuke Konno

Molecular Insights Turning Game for Management of Ependymoma: A Review of Literature

Ajay Sasidharan, Rahul Krishnatry

IDH Gene Mutation in Glioma

Leping Liu1, Xuejun Li1,2

Challenges and Advances in the Management of Pediatric Intracranial Germ Cell Tumors: A Case Report and Literature Review

Gerard Cathal Millen1, Karen A. Manias1,2, Andrew C. Peet1,2, Jenny K. Adamski1

Assessing the Feasibility of Using Deformable Registration for Onboard Multimodality‑Based Target Localization in Radiation Therapy

Ge Ren1,2,3, Yawei Zhang1,2, Lei Ren1,2

Research Advancement in the Tumor Biomarker of Hepatocellular Carcinoma

Qing Du1, Xiaoying Ji2, Guangjing Yin3, Dengxian Wei3, Pengcheng Lin1, Yongchang Lu1,
Yugui Li3, Qiaohong Yang4, Shizhu Liu5, Jinliang Ku5, Wenbin Guan6, Yuanzhi Lu7

Novel Insights into the Role of Bacterial Gut Microbiota in Hepatocellular Carcinoma

Lei Zhang1, Guoyu Qiu2, Xiaohui Xu2, Yufeng Zhou3, Ruiming Chang4

Central Odontogenic Fibroma with Unusual Presenting Symptoms

Aanchal Tandon, Bharadwaj Bordoloi, Safia Siddiqui, Rohit Jaiswal

The Prognostic Role of Lactate in Patients Who Achieved Return of Spontaneous Circulation after Cardiac Arrest: A Systematic Review and Meta‑analysis

Dongni Ren1, Xin Wang2, Yanyang Tu1,2

Inhibitory Effect of Hyaluronidase‑4 in a Rat Spinal Cord Hemisection Model

Xipeng Wang1,2, Mitsuteru Yokoyama2, Ping Liu3

Research and Development of Anticancer Agents under the Guidance of Biomarkers

Xiaohui Xu1, Guoyu Qiu1, Lupeng Ji2, Ruiping Ma3, Zilong Dang4, Ruling Jia1, Bo Zhao1

Idiopathic Hypereosinophilic Syndrome and Disseminated Intravascular Coagulation

Mansoor C. Abdulla

Phosphorylation of BRCA1‑Associated Protein 1 as an Important Mechanism in the Evasion of Tumorigenesis: A Perspective

Guru Prasad Sharma1, Anjali Geethadevi2, Jyotsna Mishra3, G. Anupa4, Kapilesh Jadhav5,
K. S. Vikramdeo6, Deepak Parashar2

Progress in Diagnosis and Treatment of Mixed Adenoneuroendocrine Carcinoma of Biliary‑Pancreatic System

Ge Zengzheng1, Huang-Sheng Ling2, Ming-Feng Li2, Xu Xiaoyan1, Yao Kai1, Xu Tongzhen3,
Ge Zengyu4, Li Zhou5

Surface-Enhanced Raman Spectroscopy to Study the Biological Activity of Anticancer Agent

Guoyu Qiu1, Xiaohui Xu1, Lupeng Ji2, Ruiping Ma3, Zilong Dang4, Huan Yang5

Alzheimer’s Disease Susceptibility Genes in Malignant Breast Tumors

Steven Lehrer1, Peter H. Rheinstein2

OSMCC: An Online Survival Analysis Tool for Merkel Cell Carcinoma

Umair Ali Khan Saddozai1, Qiang Wang1, Xiaoxiao Sun1, Yifang Dang1, JiaJia Lv1,2, Junfang Xin1, Wan Zhu3, Yongqiang Li1, Xinying Ji1, Xiangqian Guo1

Protective Activity of Selenium against 5‑Fluorouracil‑Induced Nephrotoxicity in Rats

Elias Adikwu, Nelson Clemente Ebinyo, Beauty Tokoni Amgbare

Advances on the Components of Fibrinolytic System in Malignant Tumors

Zengzheng Ge1, Xiaoyan Xu1, Zengyu Ge2, Shaopeng Zhou3, Xiulin Li1, Kai Yao1, Lan Deng4

A Patient with Persistent Foot Swelling after Ankle Sprain: B‑Cell Lymphoblastic Lymphoma Mimicking Soft‑tissue Sarcoma

Crystal R. Montgomery‑Goecker1, Andrew A. Martin2, Charles F. Timmons3, Dinesh Rakheja3, Veena Rajaram3, Hung S. Luu3

Coenzyme Q10 and Resveratrol Abrogate Paclitaxel‑Induced Hepatotoxicity in Rats

Elias Adikwu, Nelson Clemente Ebinyo, Loritta Wasini Harris

Progress in Clinical Follow‑up Study of Dendritic Cells Combined with Cytokine‑Induced Killer for Stomach Cancer

Ling Wang1,2, Run Wan1,2, Cong Chen1,2, Ruiliang Su1,2, Yumin Li1,2

Supraclavicular Lymphadenopathy as the Initial Manifestation in Carcinoma of Cervix

Priyanka Priyaarshini1, Tapan Kumar Sahoo2

ABO Typing Error Resolution and Transfusion Support in a Case of an Acute Leukemia Patient Showing Loss of Antigen Expression

Debasish Mishra1, Gopal Krushna Ray1, Smita Mahapatra2, Pankaj Parida2

Protein Disulfide Isomerase A3: A Potential Regulatory Factor of Colon Epithelial Cells

Yang Li1, Zhenfan Huang2, Haiping Jiang3

Clinicopathological Association of p16 and its Impact on Outcome of Chemoradiation in Head‑and‑Neck Squamous Cell Cancer Patients in North‑East India

Srigopal Mohanty1, Yumkhaibam Sobita Devi2, Nithin Raj Daniel3, Dulasi Raman Ponna4,
Ph. Madhubala Devi5, Laishram Jaichand Singh2

Potential Inhibitor for 2019‑Novel Coronaviruses in Drug Development

Xiaohui Xu1, Zilong Dang2, Lei Zhang3, Lingxue Zhuang4, Wutang Jing5, Lupeng Ji6, Guoyu Qiu1

Best‑Match Blood Transfusion in Pediatric Patients with Mixed Autoantibodies

Debasish Mishra1, Dibyajyoti Sahoo1, Smita Mahapatra2, Ashutosh Panigrahi3

Characteristics and Outcome of Patients with Pheochromocytoma

Nadeema Rafiq1, Tauseef Nabi2, Sajad Ahmad Dar3, Shahnawaz Rasool4

Comparison of Histopathological Grading and Staging of Breast Cancer with p53‑Positive and Transforming Growth Factor‑Beta Receptor 2‑Negative Immunohistochemical Marker Expression Cases

Palash Kumar Mandal1, Anindya Adhikari2, Subir Biswas3, Amita Giri4, Arnab Gupta5,
Arindam Bhattacharya6

Chemical Compositions and Antiproliferative Effect of Essential Oil of Asafoetida on MCF7 Human Breast Cancer Cell Line and Female Wistar Rats

Seyyed Majid Bagheri1,2, Davood Javidmehr3, Mohammad Ghaffari1, Ehsan Ghoderti‑Shatori4

Cyclooxygenase‑2 Contributes to Mutant Epidermal Growth Factor Receptor Lung Tumorigenesis by Promoting an Immunosuppressive Environment

Mun Kyoung Kim1, Aidin Iravani2, Matthew K. Topham2,3

Potential role of CircMET as A Novel Diagnostic Biomarker of Papillary Thyroid Cancer

Yan Liu1,2,3,4#, Chen Cui1,2,3,4#, Jidong Liu1,2,3,4, Peng Lin1,2,3,4,Kai Liang1,2,3,4, Peng Su5, Xinguo Hou1,2,3,4, Chuan Wang1,2,3,4, Jinbo Liu1,2,3,4, Bo Chen6, Hong Lai1,2,3,4, Yujing Sun1,2,3,4* and Li Chen 1,2,3,4*

Cuproptosis-related Genes in Glioblastoma as Potential Therapeutic Targets

Zhiyu Xia1,2, Haotian Tian1, Lei Shu1,2, Guozhang Tang3, Zhenyu Han4, Yangchun Hu1*, Xingliang Dai1*

Cancer Diagnosis and Treatments by Porous Inorganic Nanocarriers

Jianfeng Xu1,2, Hanwen Zhang1,2, Xiaohui Song1,2, Yangong Zheng3, Qingning Li1,2,4*

Delayed (20 Years) post-surgical Esophageal Metastasis of Breast Cancer - A Case Report

Bowen Hu1#, Lingyu Du2#, Hongya Xie1, Jun Ma1, Yong Yang1*, Jie Tan2*

Subtyping of Undifferentiated Pleomorphic Sarcoma and Its Clinical Meaning

Umair Ali Khan Saddozai, Zhendong Lu, Fengling Wang, Muhammad Usman Akbar, Saadullah Khattak, Muhammad Badar, Nazeer Hussain Khan, Longxiang Xie, Yongqiang Li, Xinying Ji, Xiangqian Guo

Construction of Glioma Prognosis Model and Exploration of Related Regulatory Mechanism of Model Gene

Suxia Hu, Abdusemer Reyimu, Wubi Zhou, Xiang Wang, Ying Zheng, Xia Chen, Weiqiang Li, Jingjing Dai

ESRP2 as a Non-independent Potential Biomarker-Current Progress in Tumors

Yuting Chen, Yuzhen Rao, Zhiyu Zeng, Jiajie Luo, Chengkuan Zhao, Shuyao Zhang

Resection of Bladder Tumors at the Ureteral Orifice Using a Hook Plasma Electrode: A Case Report

Jun Li, Ziyong Wang, Qilin Wang

Structural Characterization and Bioactivity for Lycium Barbarum Polysaccharides

Jinghua Qi1,2,  Hangping Chen3,Huaqing Lin2,4,Hongyuan Chen1,2,5* and Wen Rui2,3,5,6*

The Role of IL-22 in the Prevention of Inflammatory Bowel Disease and Liver Injury

Xingli Qi1,2, Huaqing Lin2,3, Wen Rui2,3,4,5 and Hongyuan Chen1,2,3

RBM15 and YTHDF3 as Positive Prognostic Predictors in ESCC: A Bioinformatic Analysis Based on The Cancer Genome Atlas (TCGA)

Yulou Luo1, Lan Chen2, Ximing Qu3, Na Yi3, Jihua Ran4, Yan Chen3,5*

Mining and Analysis of Adverse Drug Reaction Signals Induced by Anaplastic Lymphoma Kinase-Tyrosine Kinase Inhibitors Based on the FAERS Database

Xiumin Zhang1,2#, Xinyue Lin1,3#, Siman Su1,3#, Wei He3, Yuying Huang4, Chengkuan Zhao3, Xiaoshan Chen3, Jialin Zhong3, Chong Liu3, Wang Chen3, Chengcheng Xu3, Ping Yang5, Man Zhang5, Yanli Lei5*, Shuyao Zhang1,3*

Advancements in Immunotherapy for Advanced Gastric Cancer

Min Jiang1#, Rui Zheng1#, Ling Shao1, Ning Yao2, Zhengmao Lu1*

Tumor Regression after COVID-19 Infection in Metastatic Adrenocortical Carcinoma Treated with Immune Checkpoint Blockade: A Case Report

Qiaoxin Lin1, Bin Liang1, Yangyang Li2, Ling Tian3*, Dianna Gu1*

Mining and Analysis of Adverse Events of BRAF Inhibitors Based on FDA Reporting System

Silan Peng1,2#, Danling Zheng1,3#, Yanli Lei4#, Wang Chen3, Chengkuan Zhao3, Xinyue Lin1, Xiaoshan Chen3, Wei He3, Li Li3, Qiuzhen Zhang5*, Shuyao Zhang1,3*

Malignant Phyllodes Tumor with Fever, Anemia, Hypoproteinemia: A Rare and Strange Case Report and Literature Review

Zhenghang Li1, Yuxian Wei1*

Construction of Cuproptosis-Related LncRNA Signature as a Prognostic Model Associated with Immune Microenvironment for Clear-Cell Renal Cell Carcinoma

Jiyao Yu1#, Shukai Zhang2#, Qingwen Ran3, Xuemei Li4,5,6*

PlaSciPub - Platform for Scientific Publications

Copyrights © 2021 - 2022 | Plascipub | All Rights Reserved